Chapter 16

Exercise 16A

1 a The greatest value of $f(x)$ is $\frac{-131}{27}$ and the least value of $f(x)$ is -23
b The greatest value of $g(x)$ is 30 and the least value of $g(x)$ is -70
c The greatest value of $h(x)$ is -8 and the least value of $h(x)$ is -18.4
d The greatest value of y is 9 and the least value of y is -266
e The greatest value of y is 75 and the least value of y is -5
f The greatest value of y is 128 and the least value of y is -1.69
2 a The curve crosses the x-axis at $(1,0)$ and at $(-3,0)$, the y-axis at $(0,3)$
b Minimum SP at $(1,0)$, Maximum SP at $\left(-\frac{5}{3}, 9 \frac{12}{25}\right)$
c i

ii The greatest value of $f(x)$ is 5 and the least value of $f(x)$ is 0
3 a Pupil's own answer
b The greatest value of $h(x)$ is 16 and the least value of $h(x)$ is -92
4 a $f(x)=3(x-1)^{2}+5$
b Yes, because $f^{\prime}(x)>0 \forall x$, hence $f(x)$ is always rising and the greatest and least values will occur at the endpoints of the interval
5 a i, ii Minimum SP at $\left(\frac{4 \pi}{3},-2 \sqrt{3}\right)$, Maximum SP at $\left(\frac{\pi}{3}, 2 \sqrt{3}\right)$
b The greatest value of $f(x)$ is 3 and the least value of $f(x)$ is $-2 \sqrt{3}$
c Hint: use trigonometric addition formulas
d Hint: consider how the cosine varies on the given interval

Challenge

a Hint: the function is the product of two squared values
b Hint: if $x=k$ is an axis of symmetry, $f(x+k)$ will be an even function
c Hint: if you consider the even function, the minimum difference and hence the maximum value will be when $x=0$

Exercise 16B

1 The maximum value of Claire's shares is $£ 28,000$ after 20 days, the minimum value is $£ 2,000$ at the beginning.
2 a $b=30-x$
b Hint: $A=b \times l$
c Maximum area $A=225 \mathrm{~cm}^{2}$.
3 a Hint: the height is x, find expressions for the length and breadth in terms of x
b The maximum volume is $V=90.74$ inch 2 when $x=\frac{5}{3}$ inch.
4 a Hint: use the volume to find h in terms of x
b $x=15 \mathrm{~cm}^{2}$
c Minimum surface area $S=1350 \mathrm{~cm}^{2}$
5 a i Hint: consider only prices between $£ 1$ and $£ 6$
ii Since the demand for your app is linear, it can be represented by a straight line, where you have costs on the x-axis and sales on the y-axis
b Hint: Profit $=$ sales \times price - costs
c $\quad x=£ 3$, Maximum Profit $=£ 114,000$
d Pupil's own answer
6 a Hint: use the volume of the cylinder to find h in terms of r.
b $\quad r=3.25 m$, Minimum Surface $=2808 m^{2}$
7 a Hint: use the volume of the cylinder to find h in terms of r.
b $r=\sqrt[3]{\frac{9}{20 \pi}} \mathrm{~cm}$, Minimum Surface $=827.37 \mathrm{~cm}^{2}$

8 a Hint: use the surface area to find h in terms of x
b $x=\sqrt{\frac{A}{2}} c m, h=\sqrt{\frac{A}{2}} c m$
9 Max area $=7.56$ square units
10 a $h=\frac{1000}{\sqrt{3} x^{2}} \mathrm{~cm}$
b Area of cross-section

$$
=\frac{1}{2} \cdot \frac{x^{2} \sqrt{3}}{2}=\frac{x^{2} \sqrt{3}}{4}
$$

Total SA $=2 \times \Delta+3 \times \square$

$$
=\frac{2 \cdot x^{2} \sqrt{3}}{4}+3 h x
$$

$V=250$ and $V=\frac{h x^{2} \sqrt{3}}{4}$
$\therefore \frac{h x^{2} \sqrt{3}}{4}=250 \Rightarrow h=\frac{1000}{x^{2} \sqrt{3}}$
$\mathrm{SA}=\frac{x^{2} \sqrt{3}}{2}+3 \cdot \frac{1000}{x^{2} \sqrt{3}} \cdot x$
$=\frac{x^{2} \sqrt{3}}{2}+\frac{3 \sqrt{3} \cdot 1000 \cdot x}{3 x^{2}}$
$=\frac{x^{2} \sqrt{3}}{2}+\frac{1000 \cdot x \cdot \sqrt{3}}{x^{2}}$
$=\frac{x^{2} \sqrt{3}}{2}+\frac{1000 \cdot x \cdot \sqrt{3} \cdot 2}{2 x}$
$=\frac{x^{2} \cdot \sqrt{3}}{2}+\frac{2000}{x} \cdot \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}}{2}\left(x^{2}+\frac{2000}{x}\right)$
c $x=10 \mathrm{~cm}$, minimum amount of plastic $=150 \sqrt{3} \mathrm{~cm}^{2}$
11 a $P=1400 x^{3}-3410 x^{2}+2100 x$
b Maximum profit $=384.28 £ /$ tank

12 a $x=60 t, y=80 t$
b Hint: d is the hypotenuse of a rectangle where one side is x and the other one is $40-y$
c 9.6 min
136 min
14 a Hint: use Pythagoras'theorem to find the third side of the triangle
b Maximum perimeter

$$
=30(1+\sqrt{2}) \mathrm{cm}
$$

c Pupil's own answer
d $\quad \alpha=\frac{\pi}{4}$
$15 \mathrm{P}\left(\pm \frac{\sqrt{2}}{2}, \frac{3}{2}\right)$
16 Maximum Area $=2 r^{2}$

Challenge 1

$$
\frac{C}{V}=\frac{4}{9}
$$

Challenge 2

$$
A_{\text {triangle }}=\frac{9 k^{2} \sqrt{3}}{(18+\sqrt{3} \pi)^{2}}, A_{\text {circle }}=\frac{3 \pi k^{2}}{4(18+\sqrt{3} \pi)^{2}}
$$

Exercise 16C

1 a $v=4 t$
b $v(2)=8 m$
c $\quad a=4$
2 a $s(0)=4 m$
b $\quad v(4)=11 \mathrm{~ms}^{-1}$
c $t_{1}=0.33 s, t_{2}=3 s$
d $s(3)=0$, the particle is at the origin of the x-axis.
e $v=-5 m s^{-1} . v$ is negative, which means the particle is going back with respect to the previous direction.

3 a $a(4)=1.33 \mathrm{~ms}^{-2}$
b $t=50.6 s$
4 The radius is 6 m when time is

$$
t=3 s . A^{\prime}(3)=36 \pi
$$

$5 \quad \frac{d r}{d t}=\frac{75}{128 \pi} \mathrm{cms}^{-1}$
6 a Hint: height and radius are proportional while the volume is changing
b $\frac{d h}{d t}=\frac{50}{9 \pi} \mathrm{cms}^{-1}$
7 a Pupil's own answer
b Hint: $1 \mathrm{l}=1 \mathrm{dm}^{3}$
c i Hint: $g(x)=y, f(x)=[g(x)]^{2}$ ii $3 y^{2} \frac{d y}{d x}$
d Pupil's own answer
e Hint: $\frac{d r}{d t}=\frac{2}{25 \pi} m s^{-1}$, then convert seconds in hours and write the answer in decimal number.
f 19 hours and 27 minutes.
$\frac{d V}{d t}=0$ and $\frac{d r}{d t}=0$, because there is no more variation either in volume (the tank is empty now) or in radius (if we don't consider winds and tides).

